Size-dependent antioxidative activity of platinum nanoparticles

نویسندگان

  • Hidekazu Nakanishi
  • Takeki Hamasaki
  • Tomoya Kinjo
  • Kiichiro Teruya
  • Shigeru Kabayama
  • Sanetaka Shirahata
چکیده

Background So far, most of studies on nanometer-sized metal particles have focused on biological safety and potential hazards. However, anti-oxidative activity of noble metal nanoparticles (NPs) attracts much attention, recently. Platinum nanoparticles (Pt NPs) are one of the most important noble metals in nanotechnology because Pt NPs have negative surface potential from negative charges and are stably suspended from an electric repulsion between the same charged particles [1]. We previously reported that Pt NPs of 2-3 nm sizes scavenged reactive oxygen species (ROS) such as superoxide anion radical, hydrogen peroxide and hydroxyl radical in vitro [2]. Here, we report the cytotoxicity and size-dependent antioxidative activity of Pt NPs on rat skeletal muscle cell line, L6.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrochemically reduced water exerts superior reactive oxygen species scavenging activity in HT1080 cells than the equivalent level of hydrogen-dissolved water

Electrochemically reduced water (ERW) is produced near a cathode during electrolysis and exhibits an alkaline pH, contains richly dissolved hydrogen, and contains a small amount of platinum nanoparticles. ERW has reactive oxygen species (ROS)-scavenging activity and recent studies demonstrated that hydrogen-dissolved water exhibits ROS-scavenging activity. Thus, the antioxidative capacity of ER...

متن کامل

Enhancement of photocatalytic activity of ZnO–SiO2 by nano-sized Pt for efficient removal of dyes from wastewater effluents

In this work, ZnO/SiO2 nanoparticles were prepared using sol-gel method, and platinum particles were loaded on ZnO/SiO2 nanoparticles by photoreductive method. Samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). The XRD patterns showed that the zinc oxide samples have a wurtzite structure (hexagonal phase...

متن کامل

Enhancement of photocatalytic activity of ZnO–SiO2 by nano-sized Pt for efficient removal of dyes from wastewater effluents

In this work, ZnO/SiO2 nanoparticles were prepared using sol-gel method, and platinum particles were loaded on ZnO/SiO2 nanoparticles by photoreductive method. Samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). The XRD patterns showed that the zinc oxide samples have a wurtzite structure (hexagonal phase...

متن کامل

A green approach to the facile synthesis of colloidal platinum nanoparticles by Preyssler polyoxometalate

In the present study, platinum nanoparticles were synthesized through an effective, facile and green method using H14[NaP5W30O110], a Preyssler-structured polyoxometalate, under UV light irradiation. Preyssler plays the roles of photocatalyst, reducing agent and stabilizer in the synthesis of Pt nanoparticles. The effect of different parameters, i.e. time, propan-2-ol volume, pH, molar ratio of...

متن کامل

Photocatalytic degradation of E. coli bacteria using TiO2/SiO2 nanoparticles with photodeposited platinum

In this work, TiO2 /SiO2 (pure anatase), and TiO2 /SiO2 (anatase/rutile) nano-photocatalysts are prepared by using sol-gel method and control of acidity. The particles size is calculated using Scheerer, s equation and is estimated to be around 7-15 nm. In order to improve the photocatalytic activity of TiO2 /SiO2 ,1% (wt) platinum particles are loaded on both catalysts using photoreductive meth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2013